A Toolkit for Ring-LWE Cryptography

نویسندگان

  • Vadim Lyubashevsky
  • Chris Peikert
  • Oded Regev
چکیده

Recent advances in lattice cryptography, mainly stemming from the development of ring-based primitives such as ring-LWE, have made it possible to design cryptographic schemes whose efficiency is competitive with that of more traditional number-theoretic ones, along with entirely new applications like fully homomorphic encryption. Unfortunately, realizing the full potential of ring-based cryptography has so far been hindered by a lack of practical algorithms and analytical tools for working in this context. As a result, most previous works have focused on very special classes of rings such as power-of-two cyclotomics, which significantly restricts the possible applications. We bridge this gap by introducing a toolkit of fast, modular algorithms and analytical techniques that can be used in a wide variety of ring-based cryptographic applications, particularly those built around ring-LWE. Our techniques yield applications that work in arbitrary cyclotomic rings, with no loss in their underlying worst-case hardness guarantees, and very little loss in computational efficiency, relative to power-of-two cyclotomics. To demonstrate the toolkit’s applicability, we develop two illustrative applications: a public-key cryptosystem and a “somewhat homomorphic” symmetric encryption scheme. Both apply to arbitrary cyclotomics, have tight parameters, and very efficient implementations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing a Toolkit for Ring-LWE Based Cryptography in Arbitrary Cyclotomic Number Fields

Recent research in the field of lattice-based cryptography, especially on the topic of the ring-based primitive ring-LWE, provided efficient and practical ring-based cryptographic schemes, which can compete with more traditional number-theoretic ones. In the case of ring-LWE these cryptographic schemes operated mainly in power-of-two cyclotomics, which vastly restricted the variety of possible ...

متن کامل

Noise Distributions in Homomorphic Ring-LWE

We develop a statistical framework to analyse the Ring-LWE processes of A Toolkit for Ring-LWE Cryptography (Eurocrypt 2013) and similar processes. We consider the δ-subgaussian random variables used in the Toolkit and elsewhere in the literature, and we give a simple and complete characterisation of such random variables. We then apply our results to the homomorphic cryptosystem provided as an...

متن کامل

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

Worst-case to average-case reductions for module lattices

Most lattice-based cryptographic schemes are built upon the assumed hardness of the Short Integer Solution (SIS) and Learning With Errors (LWE) problems. Their efficiencies can be drastically improved by switching the hardness assumptions to the more compact Ring-SIS and RingLWE problems. However, this change of hardness assumptions comes along with a possible security weakening: SIS and LWE ar...

متن کامل

Integer Version of Ring-LWE and its Applications

In this work, we describe an integer version of ring-LWE over the polynomial rings and prove that its hardness is equivalent to one of the polynomial ring-LWE. Moreover, we also present a public key cryptosystem using this variant of the polynomial ring-LWE.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013